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Introduction

Imaging Mass Spectrometry (IMS) has evolved into a promising technology allowing
for a detailed analysis of the spatial distribution of biomolecules. However, the enor-
mous size of data sets acquired with state-of-the-art instrumentation makes a direct
manual analysis di�cult, and automated (pre-)processing becomes indispensable.

When little or no prior information on the composition of a sample is available,
it is useful to decompose the spectral image into a small number of component
spectra and abundance maps of these components. Conventional techniques such as
Principal Component Analysis (PCA) or Independent Component Analysis (ICA)
[3] have successfully been used in this setting; but they su�er from certain drawbacks:

� the component spectra found by PCA are mutually orthogonal and feature
negative counts

� ICA components often feature negative counts

� PCA and ICA components are not physically motivated and cannot recover
the true mass spectra of the tissue components.

Probabilistic Latent Semantic Analysis (pLSA) [1] directly results in normal-
ized, non-negative components which can be interpreted as ion abundance rates.

Data Processing

� simple baseline correction by channel-wise subtraction ofthe minimum

� feature extraction by local maximum detection

� bene�cial for quality and speed of further analysis

We have successfully applied pLSA in the exploratory analysis of mass spec-
tral images of snap-frozen, cryo-sectioned rat brain samples acquired with a TRIFT
II instrument that combines MALDI ionization with a stigmatic imaging TOF mass
analyzer. The spatial resolution of the data is re-binned to1� m and the spectral
resolution is re-binned to 0.1Da.

Results

Spatial/spectral component distributions

Figure 2: Abundance maps for PCA (left), ICA (middle) and pLSA (right), ordered by explained variance (PCA).

Sparsity

Figure 3: Bar plot of the four component spectra between 830 and 850 Da with the associated sparsity given below.
Dark areas correspond to low sparsity, lighter areas to higher sparsity indicating decisive peak positions.

Conclusions

� pLSA components are normalized and non-negative

� pLSA provides superior physical interpretability to PCA and ICA

� pLSA is highly competitive to PCA and ICA in terms of the richness of
morphological details revealed by the component abundancemaps

� both ICA and pLSA exhibit structures more clearly than PCA

Methods

pLSA is equivalent to non-negative matrix factorization with a Kullback-Leibler
divergence measure and can be described as a linear model with latent variablet
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In the proposed model, each
single tissue type is character-
ized by a distinct distribution
over m/z and each acquired
spectrum is regarded as a spe-
ci�c mixture of these structures.
The decisive peaks can be iden-
ti�ed by calculating the sparsity
measure [2]
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wherex0 is a 1� j Tj row vector of the matrix that holdsp(cjt).

Acknowledgements

We gratefully acknowledge �nancial support by the DFG undergrant no. HA4364/2-1 (M.H, B.Y.R.,
F.A.H), the Karl-Steinbuch-Fellowship (B.Y.R.), the HansL. Merkle foundation (M.K.), and the
Robert Bosch GmbH (F.A.H.). The �nancial support of the Netherlands BSIK program 'Virtual
Laboratory for e-science' is gratefully acknowledged by R.M.A.H. and A.K.

References

[1] T. Hofmann. Uncertainty in Arti�cial Intelligence (UIA), Stockholm, 1999.

[2] P. Hoyer.Journal of Machine Learning Research, 2004(5):1457{1469, 2004.

[3] A. Hyv•arinen and E. Oja.Neural Networks, 13(4-5):411{430, 2000.


