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Introduction

Imaging Mass Spectrometry (IMS) has evolved into a progrnisainnology allowing|
for a detailed analysis of the spatial distribution of bietwles. However, the enof-
mous size of data sets acquired with state-of-the-arumsintation makes a direcy
manual analysis di cult, and automated (pre-)processiagdmes indispensable.

When little or no prior information on the composition of angke Is available,
it Is useful to decompose the spectral image into a small ewuafbcomponent
spectra and abundance maps of these components. Conaetgabmiques such as
Principal Component Analysis (PCA) or Independent CompibAaalysis (ICA)

[3] have successfully been used in this setting; but they om certain drawbacks

the component spectra found by PCA are mutually orthogomelfeature
negative counts

ICA components often feature negative counts

PCA and ICA components are not physically motivated and ataratover
the true mass spectra of the tissue components.

Probabilistic Latent Semantic Analysis (pLSA) [1] dineatésults in normal-
Ized, non-negative components which can be interpreted abundance rates.

Data Processing

simple baseline correction by channel-wise subtractikb®@ ahinimum
feature extraction by local maximum detection
bene cial for quality and speed of further analysis

We have successfully applied pLSA In the exploratory asabfsmass spect
tral iImages of snap-frozen, cryo-sectioned rat brain sgmphuired with a TRIFT
Il instrument that combines MALDI ionization with a stign@aimaging TOF mass
analyzer. The spatial resolution of the data Is re-binnetl m and the spectral
resolution is re-binned to 0.1Da.

Results

Spatial/spectral component distributions
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Figure 2: Abundance maps for PCA (left), ICA (middle) and pLSA (riglatidered by explained variance (PCA).
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Figure 3: Bar plot of the four component spectra between 830 and 850tibéhey associated sparsity given below.
Dark areas correspond to low sparsity, lighter areas t@hgparsity indicating decisive peak positions.

Conclusions

OLSA components are normalized and non-negative
OLSA provides superior physical interpretability to PCAl 4GA

OLSA is highly competitive to PCA and ICA In terms of the rieks of
morphological details revealed by the component abundamos

both ICA and pLSA exhibit structures more clearly than PCA

Methods

PLSA Is equivalent to non-negative matrix factorizatiothva Kullback-Lelbler
divergence measure and can be described as a linear madatemnt variabld
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wheres Is a spectrumgc an m/z-channel and the hidden variable topic. Thqg
decomposition problem is solved by an Expectation Maxionz¢gEM) procedure:
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In the proposed model, each
single tissue type Is charactef-
ized by a distinct distribution
over m/z and each acquired
spectrum Is regarded as a spe-

b* | e+ ci ¢ mixture of these structures.
. | The decisive peaks can be iden-
C 4}\ - t . . .
ti ed by calculating the sparsity
¢ measure [2]
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wherex®is a 1 j Tj row vector of the matrix that holds(cjt).
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